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Abstract
Program analysis aims to determine if a program’s behav-
ior complies with some specification. Commonly, program
analyses need to be defined and tuned by humans. This is
a costly process. Recently, machine learning methods have
shown promise for probabilistically realizing a wide range of
program analyses. Given the structured nature of programs,
and the commonality of graph representations in program
analysis, graph neural networks (GNN) offer an elegant way
to represent, learn, and reason about programs and are com-
monly used in machine learning-based program analyses.
This article discusses the use of GNNs for program anal-
ysis, highlighting two practical use cases: variable misuse
detection and type inference.

1 Introduction
Program analysis is a widely studied area in programming
language research that has been an active and lively research
domain for decades with many fruitful results. The goal of
program analysis is to determine properties of a program
with regards to its behavior [26]. Traditionally analysis meth-
ods aim to provide formal guarantees about some program
property e.g., that the output of a function always satisfies
some condition, or that a program will always terminate. To
provide those guarantees, traditional program analysis relies
on rigorous mathematical methods that can deterministically
and conclusively prove or disprove a formal statement about
a program’s behavior.
However, these methods cannot learn to employ coding

patterns or probabilistically handle ambiguous information
that is abundant in real-life code and is widely used by coders.
For example, when a software engineer encounters a variable
named “counter”, without any additional context, she/he
will conclude with high probability that this variable is a non-
negative integer that enumerates some elements or events.
In contrast, a formal program analysis method — having
no additional context — will conservatively conclude that
“counter” may contain any value.

Machine learning-based program analysis (Section 2) aims
to provide this human-like ability to learn to reason over
ambiguous and partial information at the cost of foregoing
the ability to provide (absolute) guarantees. Instead, through
learning common coding patterns, such as naming conven-
tions and syntactic idioms, these methods can offer (proba-
bilistic) evidence about aspects of the behavior of a program.
This is not to say that machine learning makes traditional

program analyses redundant. Instead, machine learning pro-
vides a useful weapon in the arsenal of program analysis
methodologies.
Graph representations of programs play a central role

in program analysis and allow reasoning over the complex
structure of programs. Section 3 illustrates one such graph
representation which we use throughout this article and dis-
cusses alternatives. We then discuss GNNs which have found
a natural fit for machine learning-based program analyses
and relate them to other machine learning models (Section 4).
GNNs allow us to represent, learn, and reason over programs
elegantly by integrating the rich, deterministic relationships
among program entities with the ability to learn over am-
biguous coding patterns. In this article, we discuss how to
approach two practical static program analyses using GNNs:
bug detection (Section 5), and probabilistic type inference
(Section 6). We conclude this article (Section 7) discussing
open challenges and promising new areas of research in the
area.

2 Machine Learning in Program Analysis
Before discussing program analysis with GNNs, it is impor-
tant to take a step back and ask where machine learning
can help program analysis and why. At a first look these
two fields seem incompatible: static program analyses com-
monly seek guarantees (e.g., a program never reaches some
state) and dynamic program analyses certify some aspect of
a program’s execution (e.g., specific inputs yield expected
outputs), whereas machine learning models probabilities of
events.

At the same time, the burgeoning area of machine learning
for code [4] has shown that machine learning can be applied
to source code across a series of software engineering tasks.
The premise is that although code has a deterministic, unam-
biguous structure, humans write code that contains patterns
and ambiguous information (e.g. comments, variable names)
that is valuable for understanding its functionality. It is this
phenomenon that program analysis can also take advantage
of.
There are two broad areas where machine learning can

be used in program analysis: learning proof heuristics, and
learning static or dynamic program analyses. Commonly
static program analyses resort into converting the analysis
task into a combinatorial search problem, such as a Boolean
satisfiability problem (SAT), or another form of theorem
proving. Such problems are known to often be computation-
ally intractable. Machine learning-based methods, such as
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the work of Irving et al. [18] and Selsam and Bjørner [32]
have shown the promise that heuristics can be learned to
guide combinatorial search. Discussing this exciting area of
research is out-of-scope for this article. Instead, we focus on
the static program analysis learning problem.
Conceptually, a specification defines a desired aspect of

a program’s functionality and can take many forms, from
natural language descriptions to formal mathematical con-
structs. Traditional static program analyses commonly resort
to formulating program analyses through rigorous formal
methods and dynamic analyses through observations of pro-
gram executions. However, defining such program analyses
is a tedious, manual task that can rarely scale to a wide range
of properties and programs. Although it is imperative that
formalmethods are used for safety-critical applications, there
is a wide range of applications that miss on the opportunity
to benefit from program analysis. Machine learning-based
program analysis aims to address this, but sacrifice the abil-
ity to provide guarantees. Specifically, machine learning can
help program analyses deal with the two common sources of
ambiguities: latent specifications, and ambiguous execution
contexts (e.g., due to dynamically loaded code). Program anal-
ysis learning commonly takes one of three forms, discussed
next.

Specification Tuning where an expert writes a sound
program analysis which may yield many false positives (false
alarms). Raising a large number of false alarms leads to the
analogue of Aesop’s “The Boy who Cried Wolf”: too many
false alarms, lead to true positives getting ignored, dimin-
ishing the utility of the analysis. To address this, work such
as those of Raghothaman et al. [30] and Mangal et al. [23]
use machine learning methods to “tune” (or post-process) a
program analysis by learning which aspects of the formal
analysis can be discounted, increasing precision at the cost
of recall (soundness).

Specification Inferencewhere amachine learningmodel
is asked to learn to predict a plausible specification from ex-
isting code. By making the (reasonable) assumption that
most of the code in a codebase complies with some latent
specification, machine learning models are asked to infer
closed forms of those specifications. The predicted specifica-
tions can then be input to traditional program analyses that
check if a program satisfies them. Examples of such models
are the factor graphs of Kremenek et al. [20] for detecting
resource leaks, the work of Livshits et al. [22] and Chibotaru
et al. [10] for information flow analysis, the work of Si et al.
[33] for generating loop invariants, and the work of Bielik
et al. [8] for synthesizing rule-based static analyzers from
examples. The type inference problem discussed in Section 6
is also an instance of specification inference.

Weaker specifications — commonly used in dynamic anal-
yses — can also be inferred. For example, Ernst et al. [14]
and Hellendoorn et al. [16] aim to predict invariants (assert

statements) by observing the values during execution. Tu-
fano et al. [35] learn to generate unit tests that describe
aspects of the code’s behavior.

Black Box Analysis Learningwhere the machine learn-
ing model acts as a black box that performs the program
analysis and raises warnings but never explicitly formulates
a concrete specification. Such forms of program analysis
have great flexibility and go beyond what many traditional
program analyses can do. However, they often sacrifice ex-
plainability and provide no guarantees. Examples of such
methods include DeepBugs [29], Hoppity [13], and the vari-
able misuse problem [6] discussed in Section 5.
In Section 5 and 6, we showcase two learned program

analyses using GNNs. However, we first need to discuss
how to represent programs as graphs (Section 3) and how to
process these graphs with GNNs (Section 4).

3 A Graph Represention of Programs
Many traditional program analysis methods are formulated
over graph representations of programs. Examples of such
representations include syntax trees, control flow, data flow,
program dependence, and call graphs each providing differ-
ent views of a program. At a high level, programs can be
thought as a set of heterogeneous entities that are related
through various kinds of relations. This view directly maps
a program to a heterogeneous directed graph G = (V, E),
with each entity being represented as a node and each re-
lationship of type 𝑟 represented as an edge (𝑣𝑖 , 𝑟 , 𝑣 𝑗 ) ∈ E.
These graphs resemble knowledge bases with two impor-
tant differences (1) nodes and edges can be deterministically
extracted from source code and other program artifacts (2)
there is one graph per program/code snippet.

However, deciding which entities and relations to include
in a graph representation of a program is a form of feature en-
gineering and task-dependent. Note that there is no unique
or widely accepted method to convert a program into a graph
representation; different representations offer trade-offs be-
tween expressing various program properties, the size of the
graph representation, and the (human and computational)
effort required to generate them.
In this section we illustrate one possible program graph

representation inspired by Allamanis et al. [6], who model
each source code file as a single graph. We discuss other
graph representations at the end of this section. Figure 1
shows the graph for a hand-crafted synthetic Python code
snippet curated to illustrate a few aspects of the graph repre-
sentation. A high-level explanation of the entities and rela-
tions follows; for a detailed overview of the relevant concepts,
we refer the reader to programming language literature, such
as the compiler textbook of Aho et al. [2].
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def normalize_and_encode ( content max_len, , min_len ) :

if len ( content ) > max_len :

“””Truncate content and encode.”””

elif len ( content ) < min_len :

content content= [ ]min_len:

raise Exception ( )

return bytes_encode ( content )

Assign

Raise

Comparison

ReturnStatement
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MethodInvoke
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Index
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if
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Body

FnDef Parameters
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Figure 1. A heterogeneous graph representation of a simple synthetic Python program (some nodes omitted for visual clarity).
Source code is represented as a heterogeneous graph with typed nodes and edges (shown at the bottom of the figure). Code is
originally made of tokens (token nodes) which can deterministically be parsed into a syntax tree with non-terminal nodes
(vertexes). The symbols present in the snippet (e.g. variables) can then be computed (Symbol nodes) and each reference of
symbol denoted by an OccurenceOf edge. Finally, dataflow edges can be computed (MayNextUse) to indicate the possible
flows of values in the program. Note, the snippet here contains a bug in line 4 (see Section 5).

Tokens A program’s source code is at its most basic form
a string of characters. By construction programming lan-
guages can be deterministically tokenized (lexed) into a se-
quence of tokens (also known as lexemes). Each token can
then be represented as a node (white boxes with gray border
in Figure 1) of “token” type. These nodes are connected with
a NextToken edge (not shown in Figure 1) to form a linear
chain.

Syntax The sequence of tokens is parsed into a syntax
tree. The leafs of the tree are the tokens and all other nodes
of the tree are “syntax nodes” (Figure 1; grey blue rounded
boxes). Using edges of Child type all syntax nodes and to-
kens are connected to form a tree structure. This stucture
provides contextual information about the syntactical role of

the tokens, and groups them into expressions and statements;
core units in program analysis.

Symbols Next, we introduce “symbol” nodes (Figure 1;
black boxes with dashed outline). Symbols in Python are the
variables, functions, packages that are available at a given
scope of a program. Like most compilers and interpreters,
after parsing the code, Python creates a symbol table con-
taining all the symbols within each file of code. For each
symbol, a node is created. Then, every identifier token (e.g.,
the content tokens in Figure 1) or expression node is con-
nected to the symbol node it refers to. Symbol nodes act as
a central point of reference among the uses of variables and
are useful for modeling the long-range relationships (e.g.,
how an object is used).
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Data Flow To convey information about the program ex-
ecution we add data flow edges to the graph (dotted curved
lines in Figure 1) using an intraprocedural dataflow analysis.
Although, the actual data flow within the program during
execution is unknown due to the use of branching in loops
and if statements, we can add edges indicating all the valid
paths that datamay flow through the program. Take as an ex-
ample the parameter min_len in Figure 1. If the condition in
line 3 is true, then min_len will be accessed in line 4, but not
in line 5. Conversely, if the condition in line 3 is false, then
the program will proceed to line 5, where min_lenwill be ac-
cessed. We denote this information with aMayNextUse edge.
This construction resembles a program dependence graph
(PDG) used in compilers and conventional program analyses.
In contrast to the edges previously discussed, MayNextUse
has a different flavor. It does not indicate a deterministic
relationship but sketches all possible data flows during exe-
cution. Such relationships are central in program analyses
where existential or universal properties of programs need
to be computed. For example, a program analysis may need
to compute that for all (∀) possible execution paths some
property is true, or that there exists (∃) at least one possible
execution with some property.

It is interesting to observe that just using the token nodes
and NextToken edges we can (deterministically) compute all
other nodes and edges. Compilers do exactly that. Then why
introduce those additional nodes and edges and not let a
neural network figure them out? Extracting such graph rep-
resentations is cheap computationally and can be performed
using the compiler/interpreter of the programming language
without substantial effort. By directly providing this informa-
tion to machine learning models — such as GNNs —we avoid
“spending” model capacity for learning deterministic facts
and introduce inductive biases that can help on program
analysis tasks.

AlternativeGraphRepresentations So farwe presented
a simplified graph representation inspired from Allamanis
et al. [5]. However, this is just one possible representation
among many, that emphasizes the local aspects of code, such
as syntax, and intraprocedural data flow. These aspects will
be useful for the tasks discussed in Sections 5 and 6. Others
entities and relationships can be added, in the graph repre-
sentation of Figure 1. For example, Allamanis et al. [6] use a
GuardedBy edge type to indicate that a statement is guarded
by a condition (i.e., it is executed only when the condition
is true), and Cvitkovic et al. [12] use a SubtokenOf edge to
connect tokens to special subtoken nodes indicating that the
nodes share a common subtoken (e.g., the tokens max_len
and min_len in Figure 1 share the len subtoken).
Representations such as the one presented here are lo-

cal, i.e. emphasize the local structure of the code and allow
detecting and using fine-grained patterns. Other local repre-
sentations, such as the one of Cummins et al. [11] emphasize
the data and control flow removing the rich natural language

information in identifiers and comments, which is unnec-
essary for some compiler program analysis tasks. However,
such local representations yield extremely large graphs when
representing multiple files and the graphs become too large
for current GNN architectures to meaningfully process (e.g.,
due to very long distances among nodes). Although a single,
general graph representation that includes every imaginable
entity and relationship would seem useful, existing GNNs
would suffer to process the deluge of data. Nevertheless,
alternative graph constructions that emphasize different pro-
gram aspects are found in the literature and provide different
trade-offs.
One such representation is the global hypergraph repre-

sentation of Wei et al. [40] that emphasizes the inter- and
intraprocedural type constraints among expressions in a pro-
gram, ignoring information about syntactic patterns, control
flow, and intraprocedural data flow. This allows processing
whole programs (instead of single files; as in the represen-
tation of Figure 1) in a way that is suitable for predicting
type annotations, but misses the opportunity to learn from
syntactic and control-flow patterns. For example, it would
be hard argue for using this representation for the variable
misuse bug detection discussed in Section 5.

Another kind of graph representations is the extrinsic one
defined by Abdelaziz et al. [1] who combine syntactic and
semantic information of programs with metadata such as
documentation and content from question and answer (Q&A)
websites. Such representations often de-emphasize aspects
of the code structure focusing on other natural language
and social elements of software development. Such a repre-
sentation would be unsuitable for the program analyses of
Sections 5 and 6.

4 Graph Neural Networks for Program
Graphs

Given the predominance of the graph representations for
code, a variety of machine learning techniques has been
employed for program analyses over program graphs, well
before GNNs got established in the machine learning com-
munity. In these methods, we find some of the origins and
motivations for GNNs.

One popular approach has been to project the graph into
another simpler representation that other machine learning
methods can accept as input. Such projections include se-
quences, trees, and paths. For example, Mir et al. [24] encode
the sequences of tokens around each variable usage to pre-
dict its type (as in the usecase of Section 6). Sequence-based
models offer great simplicity and have good computational
performance but may miss the opportunity to capture com-
plex structural patterns such as data and control flow.
Another successful representation is the extraction of

paths from trees or graphs. For example, Alon et al. [7] ex-
tract a sample of the paths between every two terminal nodes
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in an abstract syntax tree, which resembles random walk
methods [39]. Such methods can capture the syntactic infor-
mation and learn to derive some of code’s semantic infor-
mation. These paths are easy to extract and provide useful
features to learn about code. Nevertheless, they are lossy
projections of the entities and relations within a program,
that a GNN can – in principle – use in full.
Finally, factor graphs, such as conditional random fields

(CRF) work directly on graphs. Such models commonly in-
clude carefully constructed graphs that capture only the
relevant relationships. The most prominent example in pro-
gram analysis includes the work of Raychev et al. [31] that
captures the type constraints among expressions and the
names of identifiers. While such models accurately represent
entities and relationships, they commonly require manual
feature engineering and cannot easily learn “soft” patterns
beyond those explicitly modeled.

Graph Neural Networks GNNs rapidly became a valu-
able tool for learned program analyses given their flexibility
to learn from rich patterns and the easiness of combining
them with other neural network components. Given a pro-
gram graph representation, GNNs compute the network em-
beddings for each node, to be used for downstream tasks,
such as those discussed in Section 5 and 6. First, each en-
tity/node 𝑣𝑖 is embedded into a vector representation n𝑣𝑖 .
Program graphs have rich and diverse information in their
nodes, such as meaningful identifier names (e.g. max_len).
To take advantage of the information within each token and
symbol node, its string representation is subtokenized (e.g.
“max”, “len”) and each initial node representation n𝑣𝑖 is com-
puted by pooling the embeddings of the subtokens, i.e., for a
node 𝑣𝑖 and for sum pooling, the input node representation
is computed as

n𝑣𝑖 =
∑

𝑠∈SubTokenize(𝑣𝑖 )
t𝑠

where t𝑠 is a learned embedding for a subtoken 𝑠 . For syntax
nodes, their initial state is the embedding of the type of the
node. Then, any GNN architecture that can process directed
heterogeneous graphs1 can be used to compute the network
embeddings, i.e.,

{h𝑣𝑖 } = Gnn
(
G′, {n𝑣𝑖 }

)
, (1)

where the GNN commonly has a fixed number of “layers” (e.g.
8), G′ = (V, E ∪ E𝑖𝑛𝑣), and E𝑖𝑛𝑣 is the set of inverse edges
of E, i.e., E𝑖𝑛𝑣 =

{
(𝑣 𝑗 , 𝑟−1, 𝑣𝑖 ),∀(𝑣𝑖 , 𝑟 , 𝑣 𝑗 ) ∈ E

}
. The network

embeddings {h𝑣𝑖 } are then the input to a task-specific neural
network. We discuss two tasks in the next sections.

1GGNNs [21] have historically been a common option, but other architec-
tures have shown improvements [9] over plain GGNNs for some tasks.

5 Case Study: Detecting Variable Misuse
Bugs

We now focus on a black box analysis learning problem that
utilizes the graph representation discussed in the previous
section. Specifically, we discuss the variable misuse task, first
introduced byAllamanis et al. [6] but employ the formulation
of Vasic et al. [36]. A variable misuse is the incorrect use of
one variable instead of another already in the scope. Figure 1
contains such a bug in line 4, where instead of min_len, the
max_len variable needs to be used to correctly truncate the
content. To tackle this task a model needs to first localize
(locate) the bug (if one exists) and then suggest a repair.

Such bugs happen frequently, often due to careless copy-
paste operations and can often be though as “typos”. Karam-
patsis and Sutton [19] find that more than 12% of the bugs in
a large set of Java codebases are variable misuses, whereas
Tarlow et al. [34] find 6% of Java build errors in the Google
engineering systems are variable misuses. This is a lower
bound, since the Java compiler can only detect variable mis-
use bugs though its type checker. The author conjectures —
from his personal experience — that many more variable mis-
use bugs arise during code editing and are resolved before
being committed to a repository.
Note that this is a black box analysis learning task. No

explicit specification of what the user tries to achieve exists.
Instead the GNN needs to infer this from common coding
patterns, natural language information within comments
(like the one in line 2; Figure 1) and identifier names (like min,
max, and len) to reason about the presence of a likely bug. In
Figure 1 it is reasonable to assume that the developer’s intent
is to truncate content to max_len when it exceeds that size
(line 4). Thus, the goal of the variable misuse analysis is to
(1) localize the bug (if one exists) by pointing to the buggy
node (the min_len token in line 4), and (2) suggest a repair
(the max_len symbol).

To achieve this, assume that a GNN has computed the net-
work embeddings {h𝑣𝑖 } for all nodes 𝑣𝑖 ∈ V in the program
graph G (Equation 1). Then, letV𝑣𝑢 ⊂ V be the set of token
nodes that refer to variable usages, such as the min_len to-
ken in line 4 (Figure 1). First, a localization module aims to
pinpoint which variable usage (if any) is a variable misuse.
This is implemented as a pointer network [38] overV𝑣𝑢∪{∅}
where ∅ denotes the “no bug” event with a learned h∅ em-
bedding. Then using a (learnable) projection u and a softmax,
we can compute the probability distribution over V𝑣𝑢 and
the special “no bug” event,

𝑝𝑙𝑜𝑐 (𝑣𝑖 ) = softmax
𝑣𝑗 ∈V𝑣𝑢∪{∅}

(
u⊤h𝑣𝑖

)
. (2)

In the case of Figure 1, a GNN detecting the variable misuse
bug in line 4, would assign a high 𝑝𝑙𝑜𝑐 to the node corre-
sponding to the min_len token, which is the location of the
variable misuse bug. During (supervised) training the loss is
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def describe_identity_pool(self, identity_pool_id):

identity_pool = self.identity_pools.get(identity_pool_id, None)

if not identity_pool:

- raise ResourceNotFoundError(identity_pool)

+ raise ResourceNotFoundError(identity_pool_id)

...

Figure 2. A diff snippet of code with a real-life variable
misuse error caught by a GNN-based model in the https:
//github.com/spulec/moto open-source project.

simply the cross-entropy classification loss of the probability
of the ground-truth location (Equation 2).
Repair given the location of a variable misuse bug can

also be represented as a pointer network over the nodes of
the symbols that are in scope at the variable misuse location
𝑣𝑏𝑢𝑔. We define V𝑠@𝑣𝑏𝑢𝑔 as the set of the symbol nodes of
the alternative candidate symbols that are in scope at 𝑣𝑏𝑢𝑔,
except from the symbol node of 𝑣𝑏𝑢𝑔. In the case of Figure 1
and the bug in line 4, V𝑠@𝑣𝑏𝑢𝑔 would contain the content
and max_len symbol nodes. We can then compute the prob-
ability of repairing the localized variable misuse bug with
the symbol 𝑠𝑖 as

𝑝𝑟𝑒𝑝 (𝑠𝑖 ) = softmax
𝑠 𝑗 ∈V𝑠@𝑣𝑏𝑢𝑔

(
w⊤ [h𝑣𝑏𝑢𝑔 , h𝑠𝑖 ]

)
,

i.e., the softmax of the concatenation of the node embeddings
of 𝑣𝑏𝑢𝑔 and 𝑠𝑖 , projected onto a w (i.e., a linear layer). For
the example of Figure. 1, 𝑝𝑟𝑒𝑝 (𝑠𝑖 ) should be high for the
symbol node of max_len, which is the intended repair for
the variable misuse bug. Again, in supervised training, we
minimize the cross-entropy loss of the probability of the
ground-truth repair.

Training When a large dataset of variable misuse bugs
and the relevant fixes can be mined, the GNN-based model
discussed in this section can be trained in a supervised man-
ner. However, such datasets are hard to collect at the scale
that existing deep learning methods require to achieve rea-
sonable performance. Instead work in this area has opted to
automatically insert random variable misuse bugs in code
scraped from open-source repositories — such as GitHub
— and create a corpus of randomly inserted bugs [17, 36].
However, the random generation of buggy code needs to be
carefully performed. If the randomly introduced bugs are
“too obvious”, the learned models will not be useful. For ex-
ample, random bug generators should avoid introducing a
variable misuse that causes a variable to be used before it is
defined (use-before-def). Although such randomly generated
corpora are not entirely representative of real-life bugs, they
have been used to train models that can catch real-life bugs.

When evaluating variable misuse models — like those pre-
sented in this section — they achieve relatively high accuracy
over randomly generated corpora with accuracies of up to

75% [17]. However, in the author’s experience for real-life
bugs — while some variable misuse bugs are recalled — preci-
sion tends to be lowmaking them impractical for deployment.
Improving upon this is an important open research problem.
Nevertheless, actual bugs have been caught in practice. Fig-
ure 2 shows such an example caught by a GNN-based vari-
able misuse detector. Here, the developer incorrectly passed
identity_pool instead of identity_pool_id as the excep-
tion argument when identity_poolwas None (no pool with
the requested id could be found). The GNN-based black-box
analysis seems to have learned to “understand” that it is
unlikely that the developer’s intention is to pass None to the
ResourceNotFoundError constructor and instead suggests
that it should be replaced by identity_pool_id. This is
without ever formulating a formal specification or creating
a symbolic program analysis rule.

6 Case Study: Predicting Types in
Dynamically Typed Languages

Types are one of the most successful innovations in program-
ming languages. Specifically, type annotations are explicit
specifications over the valid values a variable can take. When
a program type checks, we get a formal guarantee that the
values of variables will only take the values of the annotated
type. For example, if a variable has an int annotation, it
must contain integers but not strings, floats, etc. Further-
more, types can help coders understand code more easily
and software tools such as autocompletion and code nav-
igation to be more precise. However, many programming
languages either have to decide to forgo the guarantees pro-
vided by types or require their users to explicitly provide
type annotations.
To overcome these limitations, specification inference

methods can be used to predict plausible type annotations
and bring back some of the advantages of typed code. This
is especially useful in code with partial contexts (e.g., a stan-
dalone snippet of code in a webpage) or optionally typed
languages. This section looks into Python, which provides
an optional mechanism for defining type annotations. For
example, content in Figure 1 can be annotated as content:
str in line 1 to indicate that the developer expects that it will
only contain string values. These annotations can then be
used by type checkers, such as mypy [25] and other developer
tools and code editors. This is the probabilistic type inference
problem, first proposed by Raychev et al. [31]. Here we use
the Graph2Class GNN-based formulation of Allamanis et al.
[5] treating this as a classification task over the symbols of
the program similar to Hellendoorn et al. [15]. Pandi et al.
[27] offer an alternative formulation of the problem.

For type checking methods to operate explicit types anno-
tations need to be provided by a user. When those are not
present, type checking may not be able to function and pro-
vide any guarantees about the program. However, this misses

https://github.com/spulec/moto
https://github.com/spulec/moto
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the opportunity to probabilistically reason over the types
of the program from other sources of information – such as
variable names and comments. Concretely, in the example
of Figure 1, it would be reasonable to assume that min_len
and max_len have an integer type given their names and
usage. We can then use this “educated guess” to type check
the program and retrieve back some guarantees about the
program execution.

Such models can find multiple applications. For example,
they can be used in recommendation systems that help de-
velopers annotate a code base. They may help developers
find incorrect type annotations or allow editors to provide
assistive features — such as autocomplete — based on the
predicted types. Or they may offer “fuzzy” type checking of
a program [27].
At its simplest form, predicting types is a node classifi-

cation task over the subset of symbol nodes. LetV𝑠 be the
set of nodes of “symbol” type in the heterogeneous graph
of a program. Let also, 𝑍 be a fixed vocabulary of type an-
notations, along with a special Any type2. We can then use
the node embeddings of every node 𝑣 ∈ V𝑠 to predict the
possible type of each symbol.

𝑝 (𝑠 𝑗 : 𝜏) = softmax
𝜏 ′∈𝑍

(
𝐸𝜏

⊤h𝑣𝑠𝑗 + 𝑏𝜏
)
,

i.e., the inner product of each symbol node embedding with
a learnable type embedding 𝐸𝜏 for each type 𝜏 ∈ 𝑇 plus a
learnable bias 𝑏𝜏 . Training can then be performed by min-
imizing some classification loss, such as the cross entropy
loss, over a corpus of (partially) annotated code.

Type Checking The type prediction problem is a specifi-
cation inference problem (Section 2) and the predicted type
annotations can be passed to a standard type checking tool
which can verify that the predictions are consistent with the
source code’s structure [5] or search for the most likely pre-
diction that is consistent with the program’s structure [28].
This approach allows to reduce false positives, but does not
eliminate them. A trivial example is an identity function
def foo(x): return x. A machine learning model may
incorrectly deduce that x is a str and that foo returns a
str. Although the type checker will consider this prediction
type-correct it is hard to justify as correct in practice.

Training The type prediction model discussed in this sec-
tion can be trained in a supervised fashion. By scraping large
corpora of code, such as open-source code found on GitHub3,
we can collect thousands of type-annotated symbols. By strip-
ping those type annotations from the original code and using
them as a ground truth a training and validation set can be
generated.
2The type Any representing the top of the type lattice and is somewhat
analogous to the special Unknown token used in NLP.
3Automatically scraped code corpora are known to suffer from a large num-
ber of duplicates [3]. When collecting such corpora special care is needed
to remove those duplicates to ensure that the test set is not contaminated
with training examples.

def __init__(

self,

- embedding_dim: float = 768,

- ffn_embedding_dim: float = 3072,

- num_attention_heads: float = 8,

+ embedding_dim: int = 768,

+ ffn_embedding_dim: int = 3072,

+ num_attention_heads: int = 8,

dropout: float = 0.1,

attention_dropout: float = 0.1,

Figure 3. A diff snippet from the incorrect type annotation
caught by Typilus [5] in the open-source fairseq library.

Such systems have shown to achieve a reasonably high
accuracy [5] but with some limitations: type annotations are
highly structured and sparse. For example Dict[Tuple[int,
str], List[bool]] is a valid type annotation that may
appear infrequently in code. New user-defined types (classes)
will also appear at test time. Thus, treating type annotations
as district classes of a classification problem is prone to severe
class imbalance issues and fails to capture information about
the structure within types. Adding new types to the model
can be solved by employing meta-learning techniques such
as those used in Typilus [5, 24], but exploiting the internal
structure of types and the rich type hierarchy is still an open
research problem.

Applications of type prediction models include suggesting
new type annotations to previously un-annotated code but
can also be used for other downstream tasks that can exploit
information for a probabilistic estimate of the type of some
symbol. Additionally, such models can help find incorrect
type annotations provided by the users. Figure 3 shows such
an example from Typilus [5]. Here the neural model “un-
derstands” from the parameter names and the usage of the
parameters (not shown) that the variables cannot contain
floats but instead should contain integers.

7 Frontiers for GNNs on Program Analysis
GNNs for program analysis is an exciting interdisciplinary
field of research combining ideas of symbolic AI, program-
ming language research, and deep learning with many real-
life applications. The overarching goal is to build analyses
that can help software engineers build and maintain the soft-
ware that permeates every aspect of our lives. Still there are
many open challenges that need to be addressed to deliver
upon this promise.

From a program analysis and programming language per-
spective a lot of work is needed to bridge the domain exper-
tise of that community to machine learning. What kind of
learned program analysis can be useful to coders? How can
existing program analyses be improved using learned compo-
nents? What are the inductive biases that machine learning
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models need to incorporate to better represent program-
related concepts? How should learned program analyses be
evaluated amidst the lack of large annotated corpora? Until
recently, program analysis research has limited itself to pri-
marily using the formal structure of the program, ignoring
ambiguous information in identifiers and code comments.
Researching analyses that can better leverage this informa-
tion may light new and fruitful directions to help coders
across many application domains.

Crucially, the question of how to integrate formal aspects
of program analyses into the learning process is still an open
question. Most specification inference work (e.g. Section 6)
commonly treats the formal analyses as a separate pre- or
post-processing step. Integrating the two viewpoints more
tightly will create better, more robust tools. For example, re-
searching better ways to incorporate (symbolic) constraints,
search, and optimization concepts within neural networks
and GNNs will allow for better learned program analyses
that can learn to better capture program properties.

From a software engineering research additional research
is needed for the user experience (UX) of the program analy-
sis results presented to users. Most of the existing machine
learning models do not have performance characteristics
that allow them to work autonomously. Instead they make
probabilistic suggestions and present them to users. Creating
or finding the affordances of the developer environment that
allow to surface probabilistic observations and communicate
the probabilistic nature of machine learning model predic-
tions will significantly help accelerate the use of learned
program analyses.
Within the research area of GNNs there are many open

research questions. GNNs have shown the ability to learn
to replicate some of the algorithms used in common pro-
gram analysis techniques [37] but with strong supervision.
How can complex algorithms be learned with GNNs using
just weak supervision? Additionally, existing techniques of-
ten lack the representational capabilities of formal methods.
Combinatorial concepts found in formal methods, such as
sets and lattices lack direct analogues in deep learning. Re-
searching richer combinatorial — and possibly non-parametric
— representations will provide valuable tools for learning pro-
gram analyses.

Finally, common themes in deep learning also arise within
this domain:

• The explainability of the decisions andwarnings raised
by learned program analyses is important to coders
who need to understand them and either mark them
as false positives or address them appropriately. This
is especially important for black-box analyses.

• Traditional program analyses offer explicit guarantees
about a program’s behavior even within adversarial
settings. Machine learning-based program analyses
relax many of those guarantees towards reducing false

positives or aiming to provide some value beyond the
one offered by formal methods (e.g. use ambiguous in-
formation). However, this makes these analyses vulner-
able to adversarial attacks. [41] Retrieving some form
of adversarial robustness is still desirable for learned
program analyses and is still an open research prob-
lem.

• Data efficiency is also an important problem. Most
existing GNN-based program analysis methods either
make use of relatively large datasets of annotated code
(Section 6) or use unsupervised/self-supervised proxy
objectives (Section 5). However, many of the desired
program analyses do not fit these frameworks and
would require at least some form of weak supervision.
Pre-training on graphs is one promising direction that
could address this problem, but has so far is focused on
homogeneous graphs, such as social/citation networks
and molecules. However, techniques developed for ho-
mogeneous graphs, such as the pre-training objectives
used, do not transfer well to heterogeneous graphs like
those used in program analysis.

• All machine learning models are bound to generate
false positive suggestions. However when models pro-
vide well-calibrated confidence estimates, suggestions
can be accurately filtered to reduce false positives and
their confidence better communicated to the users. Re-
searching neural methods that can make accurate and
calibrated confidence estimates will allow for greater
impact of learned program analyses.
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